Turbocall: the Just-in-time compiler for
Deno FFI

2024-03-25, by littledivy

In this post, we will explore the lesser known optimization in Deno that makes FFI fast.

Introduction - the engine

V8 ! Isolates are little sandboxes that run JS. JavaScript runtimes give you the ability to call
native functions by reaching out of this sandbox. These native functions are often referred to as

“bindings”.

Optimizing these bindings are one of the most important optimizations in a JavaScript runtime.
Over the years, V8 has made significant improvements in this area to make bindings faster for

embedders.

Let’s look at an example of a V8 C++ binding:

void Add(const FunctionCallbackInfo<Value>& args) {
Isolate* isolate = args.GetIsolate();
// Check the number of arguments passed.
if (args.Length() < 2) {
isolate->ThrowException(Exception: :TypeError(
String::NewFromutf8(isolate, "Wrong number of arguments",
NewStringType: :kNormal).ToLocalChecked()));
return;
}
// Check the argument types
if (largs[0]->IsNumber() || 'args[1]->IsNumber()) {
isolate->ThrowException(Exception: :TypeError(
String: :NewFromutf8(isolate, "Wrong arguments",
NewStringType: :kNormal).ToLocalChecked()));

return;

}

// Convert the arguments to numbers.

double value = args[0]->NumberValue(isolate) + args[1]->NumberValue(isolate);
// Create a new Number value and set it as the return value.

Local<Number> num = Number::New(isolate, value);
args.GetReturnvalue().Set(num);

This does a bunch of stuff, like checking the number of arguments, type checking, converting
arguments and setting the return value. Moreover, V8 has to jump through (quite literally) a lot
of hoops to make this work. It sets up guards and jumps out of the optimized JIT code to the

runtime.

What if there was a way to call bindings without moving out of the optimized JIT code and
without all the type checks?

178 Fast API Calls?

V8 Fast calls are a relatively new optimization in V8.

https://github.com/littledivy
file:///home/divy/gh/littledivy/website/turbocall.html#fn1
file:///home/divy/gh/littledivy/website/turbocall.html#fn2

V8 can call our native binding directly from the optimized JIT code if we provide it with the
necessary type information. The necessary typechecks happen in the compiler itself including

fallback to the slow path.

int FastAdd(int a, int b);

// Extracts type information from the function signature
v8::CFunction fast_add = MakeV8CFunction(FastAdd);

This results in massive speedups for repetitve native calls from optimized JavaScript. The calls

are inlined and theoretically as fast as calling a native function.

Apart from native runtime bindings, one of the most common places where this optimization is

used is in FFI (Foreign Function Interface) calls.

Enter Deno FFI

const { symbols } = Deno.dlopen("libc.6.s0", {
open: {
parameters: ["buffer", "i32"],
result: "i32",

iy
3
Deno.dlopen is the API to open a dynamic library. Notice anything familiar? We are defining the

number of arguments, types and the return value.

We could use this information to generate optimized native binding and give it to V8!

Turbocall3: a JIT for JIT

Deno created a tiny assembler (in Rust ofc) to generate optimized bindings for FFI calls based on

the type information.

Deno.dlopen("libtest.so", {
func: {
parameters: ["buffer", "i32", "i32"],
result: "i32",

Y
1)

Turbocall generates the following bindings:

.arch aarché4
ldr x0, [x1, #8] ; buffer->data
mov X1, X2 ;o a

mov x2, X3 ;b

moxz x8, 0O
br x8 ; tailcall

This is simply ARM64 assembly for something like this in C:

int func_trampoline(void* _this, FastApiTypedArray* buffer, int a, int b) {
return func(buffer->data, a, b);

}

Most notably, it generates code to properly pass JS typed arrays and arguments to the native FFI

file:///home/divy/gh/littledivy/website/turbocall.html#fn3

symbol.

I gave a talk on this topic at the DenoFest Meetup in Tokyo # which goes into more detail about

the implementation.

Benchmarks

This made FFI calls 100x faster in Deno: https://github.com/denoland/deno/pull/15125

Let’s see how this compares against other runtimes.

Results (iters/sec)

B DencFFI B BunFFI Node.js

Sglite3

45167

DuckDB

34176

0 50000 100000 150000

This is running sqlite3 and duckdb benchmarks on Deno, Bun and Node js. See benchmark

source. E

Turbocall in action

Slide from the DenoFest talk:

{ .arch aarché4
parameters: ["buffer", "i32", "i32"],
result: "i3z2" ldr x0, [x1, #8] ; p0: buf—data
¥ mov x1l, x2 ; pl: int
mov X2, x3 : p2: int
const result = symbol(new UintBArray(1), 10, 20); movz x8, 0
br x8 ; tailcall
sub sp, sp, 32
{ stp x29, x30, [sp, 16]
parameters: [], add x29, sp, 16
result: "ué4"
} mov x@, xzr ; _recv
ldr x19, [x1, 8] ; result—data
movz x8, 0
const presult: bigint | number = symbol(); blr x8 ; symbol()
<:=‘ﬁﬁ str x0, [x19] ; copy return
Typeccript just ldr x19, [sp, 8]
worke ldp x29, x30, [sp, 16]

add sp, sp, 32
https://godbolt.org/z/jP5Wfaej6 ret

file:///home/divy/gh/littledivy/website/turbocall.html#fn4
https://github.com/denoland/deno/pull/15125
file:///home/divy/gh/littledivy/website/turbocall.html#fn5

Future

It will be interesting to see how Static Hermes® will compare against V8 fast calls. Both can

probably generate similar code at runtime but implemented very differently.

I'm also excited about just-js/ loz which is a WIP low-level JS runtime that aims to generate
V8 fast calls bindings ahead-of-time (similar to Deno) but also allow for a more engine-agnostic

design where you could swap out V8 for other engines like Hermes, Quickjs.

That’s it! Feel free to follow me on Twitter: https://twitter.com/undefined void

This document is available as PDF: https://divy.work/pdf/turbocall.pdf

1. https://v8.deve

2. https://source.chromium.org/chromium/chromium/src/+/main:v8/include/v8-
fast-api-calls.he

3. Turbocall source:
https://github.com/denoland/deno/tree/ae52b49dd6edctbb88ea39c3fctOcOcc4b59eee
7/ext/tfie

4. DenoFest talk https://www.youtube.com/watch?v=ssYN4rFWRIU«

5. https://github.com/littledivy/blazing-fast-ffi-talk

6. https://tmikov.blogspot.com/2023/09/how-to-speed-up-micro-benchmark-
300x.htmle

7. https://github.com/just-js/lo€

file:///home/divy/gh/littledivy/website/turbocall.html#fn6
file:///home/divy/gh/littledivy/website/turbocall.html#fn7
https://twitter.com/undefined_void
https://divy.work/pdf/turbocall.pdf
https://v8.dev/
file:///home/divy/gh/littledivy/website/turbocall.html#fnref1
https://source.chromium.org/chromium/chromium/src/+/main:v8/include/v8-fast-api-calls.h
file:///home/divy/gh/littledivy/website/turbocall.html#fnref2
https://github.com/denoland/deno/tree/ae52b49dd6edcfbb88ea39c3fcf0c0cc4b59eee7/ext/ffi
file:///home/divy/gh/littledivy/website/turbocall.html#fnref3
https://www.youtube.com/watch?v=ssYN4rFWRIU
file:///home/divy/gh/littledivy/website/turbocall.html#fnref4
https://github.com/littledivy/blazing-fast-ffi-talk
file:///home/divy/gh/littledivy/website/turbocall.html#fnref5
https://tmikov.blogspot.com/2023/09/how-to-speed-up-micro-benchmark-300x.html
file:///home/divy/gh/littledivy/website/turbocall.html#fnref6
https://github.com/just-js/lo
file:///home/divy/gh/littledivy/website/turbocall.html#fnref7

